Lung cancer models and how to improve them

Olga Y Gorlova
Baylor College of Medicine

October 11, 2019
Types of models

- Prediction models
 - Risk prediction models
 - Early disease prediction models
- Natural history models
 - Stage transition models
 - Disease progression models
Risk prediction (assessment) models

- Models predict risk of lung cancer within a specified time horizon
- Are based on:
 - Risk factors
 - Patient demographic characteristics - age, gender, ethnicity, education levels - at least some of them are usually included
Typically used risk factors

- Smoking history (at various levels of detail),
- Exposures: asbestos, dust, radiation;
- Physical activity
- Respiratory conditions, BMI, personal cancer history – can be assessed or self-reported);
- Family history of cancer (many varieties)
- Additional factors that are more difficult to assess: genetic variants individually or as a polygenic score, phenotypic assays of DNA repair capacity or mutagen sensitivity, fasting glucose levels, etc
Examples of risk prediction models

- **Bach model** (original 2003) - first LC risk prediction model - and extended to include CT findings (2011)); 1-year risk that can be assessed recursively; developed from the data on ever smokers with high tobacco exposure (CARET); includes smoking characteristics and asbestos exposure; **AUC 0.66-0.72**

- **Spitz model** (original 2007 and extended to include phenotypic assays data 2008) based on a case-control study and SEER data; separate formulas for current, former, and never smokers, with different predictors; 1-year risk calculations can be applied recursively; includes smoking characteristic as appropriate; asbestos, dust, hay fever, emphysema, cancer family history; **AUC 0.57-0.69**

- **Liverpool Lung Project (LLP) model** (2008) - assesses 5-years risk and is used to enroll into the UKLS; includes smoking duration, personal history of cancer, pneumonia, lung cancer family history; **AUC 0.67-0.82**

- **PLCO M2012 model** - most accurate of such models thus far; includes ethnicity, BMI, education, personal history of cancer, detailed smoking history, lung cancer family history, and COPD; assesses 6-years risk and is used to determine eligibility for LC screening in Canada; **AUC 0.803**
Does adding genetic characteristics improve risk prediction?

- Adding select genetic variants improves the discrimination ability of models, but only slightly (Raji et al 2009; Li et al 2012)
- Adding markers of DNA repair capacity and mutagen sensitivity (believed to be genetic) likewise provides only a slight improvement (Spitz et al 2008)
- Using a comprehensive GWAS-derived polygenic risk score adds little to discrimination (ILCCO work in progress)
Applications of risk prediction models

- Currently the purpose is to better define the population in which lung cancer screening would be appropriate.
- Trying to improve on the NLST eligibility criteria / USPSTF recommendations that are based solely on age and smoking history.
- Less than 50% of lung cancer cases would have been eligible for screening by these criteria.
Early (curable) disease prediction models

- None firmly established yet
- Proposed to be based on biomarkers of early disease (many different kinds: circulating proteins/miRNAs/circulating tumor DNA and mutation or methylation markers that can be detected in it/breath volatile organic compounds/radiologic or radiomics markers etc)
- The settings in which such models are to be applied are not very clear (e.g., before CT screen or after a screen with an indeterminate nodule?)
Natural history models

- Reconstruct the natural history of disease
- Can represent state/stage transitions
- Or can model premalignant states followed by the formation of the first malignant cell, tumor growth, metastasizing, with associated symptoms, and death
- Disease detection can occur through symptoms or through periodic screening
Lung cancer natural history

Natural history timeline:
- Genetic predisposition
- Exposure
- Precursor lesion
- Isolated malignant nodule
- Disseminated disease
- Death

Clinical timeline:
- Preclinical disease
- Clinical disease

Detection timeline:
- Early detection
- Symptoms
- X-ray detection
- CT-scan detection

Lead time

Genetic predisposition → Exposure → Precursor lesion → Isolated malignant nodule → Disseminated disease → Death

Natural history timeline:

Clinical timeline:

Detection timeline:
Natural history models

- Deal with parameters which usually are not observable directly.
- The values of these parameters are determined so that the model predictions are consistent with the observed data (usually from a trial).
- Then we can vary the parameters to explore hypothetical scenarios outside the settings of a fixed trial.
- Notably it was modeling that first led to the conclusion about potential effectiveness of a highly sensitive modality for LC screening (Flehinger et al JNCI 1988).
Lung cancer screening

- The National Lung Screening Trial (NLST) demonstrated lung cancer (LC) mortality reduction of 20% (over three rounds of screening).
- This led to a USPSTF screening recommendation.
- However, no generally accepted LC screening protocol currently exists.
Optimizing a screening program

The following may influence the performance of a screening program:

- Eligibility criteria - define the population at risk
- Screening interval - should depend on the typical progression rate of the disease
- Definition and work-up of a positive finding - changes as screening experience accumulates
- Duration of screening remains an open question.
Why is continuous screening important?

- The absolute risk of lung cancer increases with age, even after accounting for competing risks.
- The lifetime lung cancer risk is substantial. E.g., for male current smokers it is ~25% if competing risks are eliminated but still ~15% if they are accounted for.
- Modeling can be useful in predicting the effect of continuous, long-term screening.
Modeling of continuous screening by the CISNET group (2014)

- Found annual screening from ages 55 through 80 most advantageous in terms of the number of lung cancer deaths averted.
- Predicted 14% reduction in lung cancer mortality.
- Models run without screening resulted in 37% of cases diagnosed with stage I disease (spontaneously), which may explain the low predicted mortality reduction.

de Koning et al 2014 Ann Intern Med
The model

- We used our validated stage transition model of lung cancer natural history and screening (Gorlova et al 2001, 2003, 2005).
- The model was re-fitted to NLST data
LC mortality under CT screening of different duration versus no screening
Number of deaths vs. Year

- No screening
- 3 rounds
- 5 rounds
- 10 rounds
Number of deaths over years for different screening rounds:

- No screening
- 3 rounds
- 5 rounds
- 10 rounds
- 15 rounds
- 20 rounds
Number of deaths

Year

- No screening
- 3 rounds
- 5 rounds
- 10 rounds
- 15 rounds
- 20 rounds
- 25 rounds
Mortality reduction by the number of screens

![Graph showing the relationship between rounds of screening and mortality reduction. The x-axis represents rounds of screening, ranging from 0 to 25, and the y-axis represents mortality reduction, ranging from 0 to 0.7. The graph shows an increasing trend as the number of rounds of screening increases.]
Conclusions from this modeling exercise

- The mortality benefit depends on the duration of screening.
- Not surprisingly, the mortality reduction was higher with the continuous screening as opposed to a long-term follow-up.
- Under the ideal circumstances, it can reach ~72%.
- If screening starts at 55, continuing it for longer than 20 years carries little value.
Challenges
(modeling and beyond)
(Non-technical) challenges facing implementation and dissemination of lung cancer screening

- The lack of a clear understanding of potential benefits of LC screening by the physicians (Eberth et al Prev Med Rep 2018)
- The reduced enthusiasm and inadequate opportunity for participation in any health intervention program on the part of the highest risk group (heaviest smokers)
- The impact can be assessed by modeling
Technical challenges

- Eligibility criteria (addressed by better risk prediction models)
 - Modeling of smoking cessation in the context of screening (Anderson et al CEBP 2009), with a corresponding lung cancer risk reduction
 - Modeling of a “healthy volunteer bias” to faithfully reproduce trial results
- Screening schedule: duration, frequency, possible changes in frequency
 - Natural history parameters (e.g. the typical growth rate distribution of CT-detectable tumors) should inform the schedule
 - Modeling of effects of risk factors on growth and progression rates may suggest personalized screening schedules
Workup protocols

- Seldom considered by modeling
- Vary widely
- In terms of modeling call for:
 - Malignant and benign nodules (size, number, consistency, dependence on risk factors)
 - Incorporation of early disease biomarkers and an assessment of their value by modeling
Missed opportunities

- Modeling of screening, with an appropriate subsequent intervention, not only for lung cancer, but jointly for conditions common in smokers (emphysema and coronary artery calcifications).
- Does the absence of emphysema call for less frequent LC screening?
- What magnitude of overall mortality reduction can be achieved?
- What about cost-effectiveness?
Alternative directions: do symptoms hold any promise?

- Early stage lung cancer is believed to be asymptomatic and thus mostly found incidentally.
- However, a chart review at MD Anderson showed that the top reason (52.5%) for the early LC patients to come to medical attention was symptoms (Chen et al. 2012).
Limitations of a chart review approach

- No controls
- Symptoms were reported at a single time point
- Can a more accurate recording of symptoms be useful?
Possible alternative approaches

- Giving high-risk individuals a short questionnaire on a quarterly basis
- Creating a mobile app to log any unusual symptoms or changes in state, in the real time
- Developing a wearable device that can record and store/transmit the information on the respiratory function, in particular changes in cough (a prototype exists)
Feasibility?

- The idea is that patterns of temporal changes in symptoms or objective measurements can serve for early detection.
- Will need a lot of feasibility testing.
- If successful, will generate a huge amount of data.
- Will require new approaches to modeling.
Acknowledgements

<table>
<thead>
<tr>
<th>Claudia Henschke</th>
<th>Marek Kimmel</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Yankelevitz</td>
<td>Millennia Foy</td>
</tr>
<tr>
<td></td>
<td>Xing Chen</td>
</tr>
</tbody>
</table>